banner



Linear Algebra A Modern Introduction

Linear Algebra: A Modern Introduction 4th edition

Textbook Cover

David Poole
Publisher: Cengage Learning

enhanced content

Cengage Unlimited

Included in a Cengage Unlimited subscription. Larn More

eBook

eBook

Your students can pay an additional fee for admission to an online version of the textbook that might contain additional interactive features.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

course pack

Grade Packs

Save time with gear up-to-use assignments congenital by discipline affair experts specifically for this textbook. Y'all can customize and schedule any of the assignments y'all want to apply.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

  • Endeavor an Example Assignment

  • Course Packs
  • Terms of Use
  • Terms of Utilize

Access is contingent on utilize of this textbook in the instructor's classroom.

  • Tabular array of Contents
  • Table of Contents
  • Chapter 1: Vectors
    • one.0: Introduction: The Racetrack Game
    • 1.1: The Geometry and Algebra of Vectors (38)
    • one.two: Length and Angle: The Dot Product (64)
    • i.3: Lines and Planes (38)
    • 1.4: Applications (ix)
    • i: Chapter Review

  • Chapter 2: Systems of Linear Equations
    • ii.0: Introduction: Triviality
    • 2.1: Introduction to Systems of Linear Equations (27)
    • 2.2: Direct Methods for Solving Linear Systems (44)
    • two.iii: Spanning Sets and Linear Independence (l)
    • 2.4: Applications (31)
    • 2.5: Iterative Methods for Solving Linear Systems (xv)
    • ii: Chapter Review

  • Chapter three: Matrices
    • 3.0: Introduction: Matrices in Activity
    • three.1: Matrix Operations (33)
    • iii.ii: Matrix Algebra (43)
    • 3.3: The Changed of a Matrix (53)
    • 3.4: The LU Factorization (27)
    • 3.5: Subspaces, Ground, Dimension, and Rank (59)
    • three.half dozen: Introduction to Linear Transformations (46)
    • 3.7: Applications (l)
    • iii: Affiliate Review

  • Chapter 4: Eigenvalues and Eigenvectors
    • 4.0: Introduction: A Dynamical System on Graphs
    • iv.1: Introduction to Eigenvalues and Eigenvectors (24)
    • 4.2: Determinants (61)
    • 4.3: Eigenvalues and Eigenvectors of due north × northward Matrices (32)
    • 4.iv: Similarity and Diagonalization (53)
    • 4.5: Iterative Methods for Computing Eigenvalues (35)
    • 4.half dozen: Applications and the Perron-Frobenius Theorem (58)
    • iv: Chapter Review

  • Chapter 5: Orthogonality
    • 5.0: Introduction: Shadows on a Wall
    • five.i: Orthogonality in â„œ due north (38)
    • v.2: Orthogonal Complements and Orthogonal Projections (26)
    • five.3: The Gram-Schmidt Procedure and the QR Factorization (21)
    • 5.4: Orthogonal Diagonalization of Symmetric Matrices (30)
    • v.5: Applications (49)
    • 5: Chapter Review

  • Chapter 6: Vector Spaces
    • half dozen.0: Introduction: Fibonacci in (Vector) Infinite
    • vi.1: Vector Spaces and Subspaces (61)
    • 6.2: Linear Independence, Basis, and Dimension (45)
    • 6.3: Modify of Basis (21)
    • half-dozen.4: Linear Transformations (38)
    • six.5: The Kernel and Range of a Linear Transformation (32)
    • 6.6: The Matrix of a Linear Transformation (34)
    • six.7: Applications (16)
    • half dozen: Chapter Review

  • Chapter 7: Distance and Approximation
    • 7.0: Introduction: Taxicab Geometry
    • seven.1: Inner Product Spaces (35)
    • vii.2: Norms and Distance Functions (37)
    • seven.3: Least Squares Approximation (40)
    • 7.4: The Singular Value Decomposition (49)
    • 7.five: Applications (xviii)
    • 7: Chapter Review

  • Affiliate 8: Codes (Online only)
    • 8.1: Lawmaking Vectors (xv)
    • 8.2: Error-Correcting (nine)
    • 8.3: Dual Codes (12)
    • 8.four: Linear Codes (14)
    • 8.5: The Minimum Altitude of a Code (x)

  • Chapter A: Appendices
    • A.A: Mathematical Note and Methods of Proof
    • A.B: Mathematical Induction
    • A.C: Circuitous Numbers
    • A.D: Polynomials
    • A.Eastward: Technology Bytes (Online only)

David Poole'south innovative Linear Algebra: A Modernistic Introduction, fourth edition, emphasizes a vectors arroyo and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning. Theoretical, computational, and applied topics are presented in a flexible yet integrated way. Stressing geometric understanding earlier computational techniques, vectors and vector geometry are introduced early to help students visualize concepts and develop mathematical maturity for abstract thinking. Additionally, the book includes ample applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems.

The WebAssign enhancement to this textbook, which includes an interactive eBook, is a fully customizable online solution that empowers students to acquire, not just do homework. Insightful tools salvage time and highlight exactly where students are struggling. Students get an engaging experience, instant feedback, and improve outcomes. A full win-win!

Features

  • Read Information technology links nether each question rapidly jump to the respective section of the eBook.
  • Sentinel It links provide footstep-by-step teaching with curt, engaging videos that are ideal for visual learners.
  • Master It Tutorials (MI) show how to solve a similar trouble in multiple steps by providing direction along with derivation so students understand the concepts and reasoning backside the problem solving.
  • Expanded Problem (EP) questions are expanded versions of existing questions that include intermediary steps to guide the pupil to the final reply.
  • Course Packs with gear up-to-employ assignments built past discipline matter experts specifically for this textbook are designed to relieve y'all fourth dimension, and tin can be easily customized to come across your didactics goals.
  • Lecture Videos are available equally a textbook resource.

Utilise the Textbook Edition Upgrade Tool to automatically update all of your assignments from the previous edition to corresponding questions in this textbook.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words take been randomized and then that each pupil receives a unique version of the question. This listing is updated nightly.

Question Group Key

MI - Chief Information technology Tutorial
EP - Expanded Problem
XP - Actress Trouble

Question Availability Color Key

Blackness questions are bachelor at present
GRAY questions are nether development

Grouping Quantity Questions
Affiliate ane: Vectors
1.1 38 CV.001 CV.002 VE.001 VE.002 VE.003 002 003 006 007 009 012 013 015 017 018.MI 018.MI.SA 021 024 025 026 027 031 033 035 036 038 039 042 044 045 046 048 049.MI 049.MI.SA 051 054 057 501.XP
1.two 64 CV.001 Exp.002 Exp.004 Exp.006 Exp.008 001 003 005 006 007 009 011 013 015 016 018 018.EP 020 020.EP 021 021.EP 023 023.EP 024.MI 024.MI.SA 026 026.EP 027 030 031 032 033 034.MI 034.MI.SA 035 036 037 038 039 040 042 042.EP 045 046 048 049 051 052 053 055 057 058 059 060 061 063 066 067 068 069 070 072 074 501.XP
ane.3 38 001 003 006 007.MI 007.MI.SA 009 011 012 013 013.EP 015 017 018 018.EP 021 024 027 028.MI 028.MI.SA 030 032 032.EP 033 034 036 037 040 041 042 043 043.EP 045 045.EP 047 048 501.XP 502.XP 503.XP
1.iv 9 003.MI 003.MI.SA 004 006 009 011 012.MI 012.MI.SA 013
Chapter two: Systems of Linear Equations
2.1 27 003 006 007 009 011.MI 011.MI.SA 012 014 015 018 019 020 021 024 025 027 028 030 031 033 034.MI 034.MI.SA 036 036.EP 041 044 044.EP
2.2 44 VE.002 VE.003 001 003 006 009 012.MI 012.MI.SA 014 015 017 018 019 021 023 025 027.MI 027.MI.SA 030 030.EP 031 032 033 036 038 039 040 040.EP 042.MI 042.MI.SA 045 045.EP 048 048.EP 049 054 056 057 059 060 501.XP 502.XP 503.XP 504.XP
2.three fifty CV.001 001 001.EP 003 003.EP 005 005.EP 007 007.EP 008 008.EP 009 012 014 015 016 017.MI 017.MI.SA 018 019 020 022 022.EP 023 023.EP 024 024.EP 025 025.EP 027 027.EP 030 030.EP 033 033.EP 035 035.EP 036 036.EP 039 039.EP 041 041.EP 042 043 045 046 047 048 501.XP
2.4 31 001 003 005 006 007 008 009 012 015 016 018 019.MI 019.MI.SA 021 024.MI 024.MI.SA 025 027 027.EP 028 030 037 038 038.EP 039 042 045 046 048 049 051
2.5 xv 001 003 004 006 007 009 010 012 015 015.EP 018 020 022 024 027
Chapter 3: Matrices
3.1 33 CV.001 CV.002 001 003 004.MI 004.MI.SA 005 006 009.MI 009.MI.SA 012 015 015.EP 019 021 022 023 024 027 029 030 031 031.EP 032 033 036 036.EP 037 039 041 501.XP 502.XP 503.XP
iii.ii 43 VE.001 VE.002 VE.003 001 003 004 005 006 007 009.MI 009.MI.SA 010 012 013 013.EP 014 015 015.EP 019 021 022 023 024 026 027 028 029 032 033 034 036 037 037.EP 038 039 041 042 044 046 047 501.XP 502.XP 503.XP
3.3 53 VE.001 VE.002 VE.003 VE.004 001 002 003 006 007.MI 007.MI.SA 009 011 011.EP 012 012.EP 014 015 016 018 021 023 024 025 027.MI 027.MI.SA 029 031 033 034 036 038 039 041 042 043 045 047 048 049 051 052 054 057.MI 057.MI.SA 060 062 063 064 066 069 072 501.XP 502.XP
3.4 27 VE.001 002 002.EP 003.MI 003.MI.SA 004 004.EP 006 006.EP 007 009 010 012 013 015.MI 015.MI.SA 018 019 021 023 024 026 027 027.EP 029 031 033
3.five 59 CV.001 VE.001 VE.002 VE.003 009 011 011.EP 012 012.EP 013 013.EP 014 014.EP 015 015.EP 016 016.EP 017 018.MI 018.MI.SA 019 020 021 022 024 027 028 029 030 031 033 034 035 035.EP 036 038.MI 038.MI.SA 041 042 044 045 045.EP 046 046.EP 048 048.EP 050 050.EP 051 053 054 055 058 059 060 062 064 065 501.XP
3.half dozen 46 CV.001 CV.002 VE.001 VE.002 VE.003 VE.004 VE.005 VE.006 001 002 003 004 007 009 012 013 015 017 018 019 021.MI 021.MI.SA 022 023 024 027 030 031 032 034 036 036.EP 037.MI 037.MI.SA 039 039.EP 042 044 045 047 048 049 051 052 053 054
3.7 50 VE.001 VE.002 VE.003 001 003 003.EP 004.MI 004.MI.SA 006 006.EP 008 008.EP 009.MI 009.MI.SA 010 012 015 015.EP 018 019 021 022 024 027 030 031 033 035 036 039 040 042 045 046 048 051 053 054 057 058 060 062 063 066 067 069 072 075 076 078
Chapter 4: Eigenvalues and Eigenvectors
four.1 24 CV.001 002 003 006 007 009 012 014 015 017.MI 017.MI.SA 018 021 024.MI 024.MI.SA 027 027.EP 030 032 032.EP 033 036 501.XP 502.XP
4.ii 61 CV.001 CV.002 CV.003 Exp.012 VE.001 VE.002 VE.003 VE.004 VE.005 VE.006 001 003 006.MI 006.MI.SA 009 010 012 013 015 017 018 021 022 024 027 030 032 033 036 039 041 043 044 045.MI 045.MI.SA 046 046.EP 047 048 049 049.EP 051 053 054 055 056 057 057.EP 058 060 060.EP 062 062.EP 063 065 066 069 070 501.XP 502.XP 503.XP
4.three 32 001 003 005 006.MI 006.MI.SA 007 009 012 013 014 015.MI 015.MI.SA 016 017 017.EP 018 019 020 021 022 023 024 026 027 028 030 031 032 035 036 037 501.XP
four.4 53 VE.001 VE.002 VE.003 002 003 004 005 006 008 008.EP 009 009.EP 011.MI 011.MI.SA 012 012.EP 014 014.EP 015 015.EP 016 016.EP 018.MI 018.MI.SA 020 021 022 022.EP 024 025 027 029 030 031 033 034 036 037 039.MI 039.MI.SA 040 042 043 044 045 047 049 050 052 501.XP 502.XP 503.XP 504.XP
4.5 35 002 002.EP 003 003.EP 004.MI 004.MI.SA 005 006 009 010 012 013 015 017 018 021 023 024 027 030.MI 030.MI.SA 032 033 034 036 039 040 042 043 045 046 047 051 052 053
four.vi 58 003 003.EP 004 004.EP 006 006.EP 008.MI 008.MI.SA 009 010 011 012 014 015 024 029 030 031 032 032.EP 033 034 036 038 041 042 044 045 046 047 048 049 051 053 055 056 059.MI 059.MI.SA 060 063 064 065 066 068 069 071 072 073 075 077 078 079 081 084 086 087 090 091
Chapter 5: Orthogonality
v.1 38 001 001.EP 003 003.EP 005 005.EP 006 006.EP 007 009 011 011.EP 012 012.EP 013 015 015.EP 016 016.EP 017 017.EP 018 018.EP 020 020.EP 021 021.EP 022 023 024 025 026 029 030 031 033 036 501.XP
5.two 26 003 003.EP 006.MI 006.MI.SA 007 009 012.MI 012.MI.SA 013 013.EP 015 017 018 019 020 021 023 024 025 026 027 028 501.XP 502.XP 503.XP 504.XP
5.3 21 VE.001 VE.002 VE.003 003 003.EP 005 005.EP 006 007.MI 007.MI.SA 009 012.MI 012.MI.SA 015 017 018 020 021 023 024 501.XP
5.4 thirty VE.001 VE.003 001.MI 001.MI.SA 003 003.EP 004 004.EP 005 005.EP 006 006.EP 009 009.EP 012 014 015 016 017 018 018.EP 019 021 022 023.MI 023.MI.SA 024 025 027 028
5.five 49 001 003 004 006 007 009 012 013 013.EP 014.MI 014.MI.SA 015 018 021 021.EP 022 022.EP 023 023.EP 024 024.EP 029 031 033 036 037 038 039 041 042 045 046 048 050 051 053 054 056 057 060 061 063 066 067 067.EP 068 069 072 074
Chapter half dozen: Vector Spaces
6.1 61 CV.001 VE.001 VE.002 VE.003 VE.004 VE.005 VE.006 001 002 003 005 006 009 014 015 018 019 022 023 024 024.EP 025 025.EP 027 027.EP 029 029.EP 030 030.EP 031 033 033.EP 034 034.EP 036 036.EP 037 037.EP 039 039.EP 040 040.EP 042 042.EP 046 048 050 051 051.EP 052 052.EP 053 054 055 056 057 059 060 062 062.EP 064
half-dozen.2 45 001 003.MI 003.MI.SA 006 006.EP 007 009 009.EP 010 012 013 018 018.EP 019 019.EP 021 021.EP 022 022.EP 024 024.EP 026 027 029 030 031 034 036 039 040 044 045 048 050 051 053 054 055 057 058 501.XP 502.XP 503.XP 504.XP 505.XP
6.3 21 CV.001 VE.001 VE.002 VE.003 VE.004 003 006.MI 006.MI.SA 009 012 014 015 015.EP 018.MI 018.MI.SA 021 022 501.XP 502.XP 503.XP 504.XP
half-dozen.four 38 VE.001 VE.002 VE.003 VE.004 VE.005 VE.006 002 002.EP 003 003.EP 004 004.EP 006 006.EP 009 009.EP 012 012.EP 014 015.MI 015.MI.SA 016 018 019 020 021 022 025 026 030 031 032 033 034 036 501.XP 502.XP 503.XP
vi.five 32 VE.001 VE.002 VE.003 002 003 006 008 009 010.MI 010.MI.SA 011 011.EP 012 015 015.EP 017 017.EP 018 018.EP 019 019.EP 021 024 026 027 028 029 033 034 036 037 501.XP
6.half dozen 35 001.MI 001.MI.SA 002 003 006 007 009 012 015 016 017 017.EP 018 018.EP 020 021 023 024.MI 024.MI.SA 025 027 027.EP 028 028.EP 030 030.EP 031.MI 031.MI.SA 033 034 036 040 042 043 046
6.seven 16 001 003 003.EP 004 006.MI 006.MI.SA 008 009 012 013 015 017 018 020 021 022
Affiliate seven: Altitude and Approximation
7.1 35 VE.001 VE.002 VE.003 001 002 003 005 006.MI 006.MI.SA 008 009 012 015 016 018 019 020 021 022 023 024 026.MI 026.MI.SA 027 028 029 030 031 032 036 037 039 041 042 043
7.2 37 001 002 003.MI 003.MI.SA 004 005 006 009 010 013 014 017 019 020 021.MI 021.MI.SA 022 023 024 026 027 029 030 031 033 034 035 035.EP 036 037 039 040 042 043 045 047 048
seven.3 xl 001 003 006 007.MI 007.MI.SA 009 009.EP 011 012 015 018 018.EP 019.MI 019.MI.SA 021 021.EP 024 025 027 029 030 033 035 036 038 039 042 044 045 047 048 051 053 054 055 057 058 501.XP 502.XP 503.XP
7.4 49 001 003.MI 003.MI.SA 004 006 007 008 009 010 012.MI 012.MI.SA 013 013.EP 014 015 015.EP 016 018 021 021.EP 022 024 025 026 028 029 030 031 033 034 036 037 038 039 041 042 043 045 046 048 049 051 053 054 055 057 059 062 063
vii.v 18 001 003 003.EP 004 005 006 009 010 012 015 017 020 021 022 023 025 026 027
Chapter 8: Codes (Online simply)
eight.1 fifteen 001 003 003.EP 006 006.EP 008 009 011 012 012.EP 014 017 018 019 021
8.2 9 003 004 005 006 007 008 009 010 014
8.iii 12 002 003 004 006 007 009 010 012 014 015 017 020
viii.four 14 002 002.EP 003 003.EP 005 005.EP 006 006.EP 008 009 010 012 015 016
8.five ten 002 003 005 006 007 010 011 012 015 016
Total 1541

Linear Algebra A Modern Introduction,

Source: https://www.webassign.net/features/textbooks/poolelinalg4/details.html

Posted by: kirbytherstaid.blogspot.com

0 Response to "Linear Algebra A Modern Introduction"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel